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Abstract
We present here a summary of the calculated structural, dynamical and
thermodynamical properties of a number of vicinal surfaces of fcc metals with
the aim of identifying trends in their characteristics. In general, multilayer
relaxations indicate a contraction in the bonds between surface atoms except
for that of the least undercoordinated surface atom (‘corner’) whose bond
length with the nearest neighbour bulk atom displays an impressive expansion.
Electronic structure calculations show a rearrangement of charge densities near
the steps and the layer resolved density of states highlights the characteristics
of the undercoordinated atoms. The frequencies of localized vibrational
modes on stepped surfaces point to both softening and stiffening of specific
force constants, which lead to enhancement of modes in both the lower and
higher ends of the frequency spectrum in the vibrational densities of states.
Contributions to the surface vibrational entropy from undercoordinated atoms
are found to depend strongly on their atomic coordination and play an important
role in determining the step excess free energy for certain step geometries.
Comparisons of results are made with available experimental data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the past three decades of continuous advances in surface science techniques, stepped surfaces
have acquired special significance for a number of reasons. In the 1970s, regularly stepped so
called vicinal surfaces were used to probe zone boundary phonons [1] because experimental
techniques such as electron energy loss spectroscopy (EELS) were in their infancy limited
to measurements of modes present at the Brillouin zone (BZ) centre (� point). Since, by
construction, the BZ for stepped surfaces involves the folding back of some zone boundaries
to the zone centre, observations made at the latter part of the surface BZ could reveal modes
with wavevectors corresponding to the former. It is in this spirit that Ibach and Bruchmann
[1] measured phonons of stepped Pt[6(111) × (111)] using EELS. Techniques such as EELS
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and He atom surface scattering have since become fully capable of measuring dispersion of
surface phonons and have uncovered frequencies of step localized modes and their dispersion
on vicinals of Cu [2, 3] and Ni [4]. Characteristics of step localized vibrational modes provide
important information about the nature of the bonding between atoms in these regions of low
coordination on stepped surfaces. There are, however, many other fundamental reasons for
continued interest in their study. For some time now it has become clear that steps at surfaces
provide favourable sites for chemical reactions and nucleation [5]. The role of steps in chemical
reactions such as molecular dissociation has been the subject of intense recent study [6, 7].
As a result of undercoordination of step atoms, stepped surfaces are also subject to several
types of structural change such as faceting, step doubling and roughening as a function of
surface temperature and, in some cases, under the influence of adsorbates. There have thus
been questions about the underpinnings of the reactivity and conditions of stability of vicinal
surfaces.

In recent times, with increasing emphasis on nanoscience, vicinal surfaces have provided
yet more reasons for their systematic study. To begin with, vicinal surfaces provide natural
templates for the growth in nanostructures—a possibility already being exploited in the
synthesis and examination of nanowires and magnetic nanostructures. Secondly, as a result
of the variety of local environments of the surface atoms, vicinal surfaces provide a ready
made atomic laboratory for examining the effect of local coordination and geometry on system
characteristics. Depending on the extent of the local and/or extended nature of the chemical and
physical properties of vicinal surfaces, the issue of their relevance to studies of nanoparticles
can be addressed. As we will see, a number of features of vicinal surfaces, for a set of metals
examined here, arise from local characteristics and open the way for making the connection
to those of nanoparticles. Furthermore, steps are present on surfaces even when one least
desires them. For processes such as epitaxial growth, self-assembly of molecular systems and
other laboratory and industrial applications in which a solid surface serves as a template, the
questions of the electronic, vibrational, thermodynamical characteristics of the steps on these
surfaces become very much germane to the issues on hand. Vicinal surfaces, because of their
regular (periodic) array of steps (which may or may not have kinks), provide a great avenue for
controlled and systematic study of the role that steps can play wherever they may be present.

While the importance of stepped surfaces to many physical, chemical and engineering
applications has been known of for sometime, more recent work exploits the chirality of kinked
surfaces and their influence in distinguishing between the characteristic of self-assembly of
molecules and the enantio-selectivity in chemical reactions [8, 9]. Given the multitude of areas
of interest in understanding the characteristics of vicinal surfaces, the aim in this paper is to
review some of the trends in behaviour, as a function of local geometry and terrace width.
We have taken advantage of the fact that this volume contains contributions from a number of
authors who have been pioneers in the field. We have thus restricted ourselves to considering
vicinal surfaces which have been of most direct interest to us. These are the vicinals of several
fcc transition metals for which we provide a review of the structural and dynamical properties
and their contributions to the thermodynamical properties. The structural properties involve
an analysis of multilayer relaxations, bond length changes of surface atoms and insights into
the local electronic density of states, as a function of atomic coordination. By dynamical
properties we mean here the features in the vibrational spectra of these surfaces whose origins
and characteristics we trace. The aim here is to identify novel features which arise from the
inherent complexity of these surfaces and the role that they play in the vibrational density
of states. Reviewing the latter paves the way for presenting vibrational contributions to the
entropy and free energy of the surfaces and the steps. These thermodynamical quantities
are undoubtedly of great interest in considerations of the stability of the vicinal surfaces. Our
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Figure 1. The hard sphere layout of a vicinal surface: fcc(977) is a vicinal of fcc(111) with a
monatomic (100) microfaceted step face. The terrace is approximately eight atomic chains wide.
The miscut angle θ and the terrace width w are shown in the inset.

purpose in this paper, however, is to identify the role that local coordination plays in controlling
the characteristics and to establish whether vibrational contributions are so significant as to
be non-negligible. We leave the question of relative stability and chemical reactivity of these
surfaces for the future. While we made comparisons with experimental data where available,
this paper mainly focuses on theoretical studies directed towards obtaining a microscopic
understanding of the systems.

The rest of the paper is organized as follows. Section 2 contains a summary of the standard
nomenclature used to identify vicinal surfaces with respect to the geometry of their terraces and
step faces. This is followed in section 3 with a discussion of some of the theoretical techniques
that are used. In section 4, a comparative analysis of the results is presented and compared with
experimental data where available. Finally, conclusions regarding the trends in the behaviour
and their correlation with local atomic coordination are summarized in section 5.

2. Surface nomenclature and geometry

Vicinal surfaces consist of regularly spaced low Miller index terraces separated by monatomic
steps. They are obtained by cutting the crystal at an angle slightly off the low Miller index
((100), (111) and (110)) planes. Figure 1 is a hard sphere diagram of a fcc(977) surface showing
the geometry of the terrace and the step face. In this case the terrace is an eight atom wide
strip of fcc(111) surface, while the step face has a (100) microfacet. This vicinal is created by
cutting the crystal at 7◦ away from the (111) plane towards the [21̄1̄] direction and compact,
monatomic steps run along the [01̄1] direction. On fcc(111) surfaces the 〈110〉 direction is not
parallel to any plane of symmetry and there exist two different ways of generating monatomic
stepped surfaces: by directing the miscut angle towards either the [21̄1̄] or the [2̄11] direction.
In the case of the former, as we see in figure 1, the step face has a (100) microfacet (the so
called A type), while in the case of the latter it would yield a (111) microfacet (the so called B
type). The B type step corresponding to fcc(977) is fcc(997) for which the miscut angle is 6.5◦.
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Figure 2. A stereographic projection for fcc crystals around the (100) pole showing several vicinal
surfaces in relation to the low Miller index surfaces from which they are derived.

Table 1. Structural notation and geometric features for several fcc vicinals. Here db is the bulk
interlayer separation, �r is the surface registry and w is the terrace width (all in units of a, the
lattice constant).

Miller index Compact-step notation Miscut angle db �r w

hkl S(htktlt) × (hsksls) (deg) (a) (a) (a)

311 2(100) × (111) 25.24 0.3015 0.6396 1.1726
511 3(100) × (111) 15.8 0.1924 0.680 1.8368
310 3(100) × (110) 18.44 0.1581 0.4743 1.581
410 4(100) × (110) 14.04 0.1212 0.4849 2.0616
211 3(111) × (100) 19.5 0.2041 0.5773 1.7319
977 8(111) × (100) 7.01 0.0747 0.6078 4.730
331 3(111) × (111) 22.0 0.2294 0.5677 1.5408
210 2(110) × (100) 26.56 0.2236 0.4472 1.118
320 3(110) × (100) 11.3 0.1387 0.6933 1.8026
551 3(110) × (111) 8.05 0.1400 0.9901 2.5247

A stereographic view of the collection of vicinals of varying terrace widths and geometries
is shown in figure 2, drawn around the pole at fcc(100). The two types of vicinal for fcc(111)
surfaces fall on the two sides of the graph around (111) separated by 60◦. Together with
(997) we have (331) which is also of B type with terrace widths of three atoms. The A
type counterpart of (331) is (211) which lies on the same side of the stereograph as (977).
For fcc(100) surfaces, the stereograph map neatly separates the two types of step face of its
vicinals: those with a close packed (111) microfacet lie along the line joining the (100) pole
to (111) and those with the (110) microfacet along the other line. An angle of 45◦ separates
the in-plane orientation of these steps. Similarly, the set of loosely and close packed step faces
of vicinals of fcc(110) flank the location of (110) on the stereograph with a separation of 90◦
between them. Thus along each side of the stereograph the terrace geometry and width change
logically while maintaining the same geometry for the step face. In the Miller index notation,
vicinals lying along the (100)–(110) side of the stereograph have indices (hk0), while those
along (110)–(111) have (hhk) and those along (111)–(100) are denoted by (hkk). A more self-
explanatory notation for surface structure was introduced by Lang et al [10]. In this notation,
the general form S(htktlt) × (nsksls) represents the Miller indices of the terrace plane (ntktlt)

and the step face (nsksls), respectively, and S is the atomic width of the terrace. In table 1
we summarize the notation for the various vicinal surfaces that are discussed in this paper,
together with their miscut angles θ and the interatomic separations for ideal (bulk terminated)
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Figure 3. A top view of six vicinals of three atom wide terraces: (211) and (311) are vicinals of
fcc(111); and (551) are vicinals of fcc(110).

geometry. Here w is the width of the terrace (see figure 1) and �r is the registry (see figure 4).
For comparative purposes we include in our list six vicinals, each of approximately three atom
wide terraces, of the (100), (111) and (110) geometry and two types of step face as shown in
the stereograph (figure 2). These six surfaces are shown in figure 3. Here (511) and (310) are
vicinals of fcc(100), with (111) and (100) microfaceted step faces, respectively. The (310) is
thus an open step arrangement and could be considered to be a regularly kinked step edge.
The coordination of the step atoms is accordingly 6 for fcc(310). Next, the two corresponding
surfaces of fcc(111) are (211) and (331) with the A and B types of step face, respectively.
Finally, the corresponding surfaces of fcc(110) are (551) and (320), the former with a close
packed (111) step face and the latter with a kinked (100) microfacet. In table 1, structural details
of (311) and (210), which are vicinals of fcc(100) and fcc(110) with two atom wide terraces, are
also provided. Details for (410) and (977) are given as well to provide the reader with a sense
of the effect of increasing the terrace width. Quite clearly fcc(977) is just a broader terrace
version of fcc(211) while (410) is related to (310). As in several previous studies [11, 12, 3, 13]
we will use the following notation for the surface atoms, as illustrated in figure 4: SC for atoms
in the step chain; TC for atoms in the terrace chain (if there is more than 1, we label them as
TC1, TC2 etc) and CC for atoms in the corner chain. The coordination of these atoms on the
six surfaces and the interatomic separation within a chain are summarized in table 2. For the
three surfaces (310), (320) and (551), there are actually five undercoordinated sites—three in
the top terrace and two underneath. In contrast, on (511), (211) and (331), there are only three
undercoordinated sites. Together, these six surfaces provide a range of coordination from 6
to 11. The coordination of atoms on other vicinal surfaces can be found by extrapolation of
those in table 2. An atom of great importance to us is labelled BNN in figure 4. This is the
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Figure 4. A side view of the vicinal surface showing the step (SC), terrace (TC), corner (CC) and
BNN atoms, interlayer separations di j and surface registry (�r).

Table 2. Atomic coordination and interatomic separation in the chains (�y), where a is the lattice
constant, for the six fcc vicinals.

Miller index �y NSC NTC NCC NC4 NC5

511 a/
√

2 7 8 10 12 12

211 a/
√

2 7 9 10 12 12

331 a/
√

2 7 9 11 12 12

551 a/
√

2 7 7 9 11 11
320 a 6 7 9 11 11
310 a 6 8 9 11 12

nearest neighbour of the corner atom in the bulk and appears to participate in the electronic,
structural and vibrational properties of the systems. In our calculations we have taken the x
and y axes to lie in the surface plane, the x axis being perpendicular to the step and the y axis
along the step. The z axis is along the surface normal.

3. Theoretical techniques

In this section we discuss some of the details of selected theoretical techniques which are used to
calculate the structure, energetics, vibrational modes and densities of states, electronic charge
densities and local electronic densities of states and also vibrational free energies of vicinal
surfaces considered here. The section is divided into three parts dealing with calculations
of (a) structure and energetics, (b) vibrational dynamics and (c) vibrational free energy. The
review is by no means exhaustive and the details given are intended to motivate the reader to look
up the original papers. As with any complex system, a range of theoretical and experimental
techniques are applied to supplement the findings from the others. Since approximations
are always involved, both in the extraction of information from experimental data and in the
application of theoretical methods, it is the trend in the observed and calculated properties that
is more meaningful than the quantitative information itself. It is thus interesting that for the
systems considered here, despite the differences in theoretical techniques, the salient features
in the characteristics are found to be very similar.
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3.1. Determination of surface structure and energetics

Once the coordinates of atoms corresponding to the surface geometry discussed in table 1
are generated, it is necessary to allow the system to relax so that atoms find their equilibrium
positions in their undercoordinated sites. Relaxations of atoms in the surface layers has been
known of for quite some time,on both low and high Miller index surfaces. To obtain the relaxed
position standard algorithms such as simulated annealing, steepest descent and conjugate
gradient methods are used for minimizing the total energy of the system [14]. A critical
ingredient in all such calculations is the interaction between the atoms/ion cores/electrons.
One way to treat the system is to assume a particular form for the interatomic potential. In
recent times semi-empirical many body potentials such as those from the embedded atom
method (EAM) [15] and effective medium theory (EMT) [16] have been used. While such
interaction potentials have had amazing success in predicting/explaining the characteristics of
surfaces and nanostructures of six transition metals (Ni,Cu, Ag, Pd, Pt, Au), their reliability has
to be checked by comparison with more accurate methods. Such an opportunity is provided
by ab initio electronic structure calculations which have considerable predictive power and
are becoming increasingly feasible even for complex systems such as surfaces with steps and
kinks. Below we give some general details of ab initio electronic structure calculations that
we and others have used. We follow this up with a short description of the EAM potentials
which have been used to calculate structural properties of vicinal surfaces.

3.1.1. Ab initio electronic structure calculations. Ab initio electronic structure calculations
have generally been performed within a pseudopotential approach to density functional theory
(DFT) using either the local density approximation (LDA) [17] or the generalized gradient
approximation (GGA) [18]. In [19] for example, the numerical implementation of the technique
was based on a computer code developed by Meyer et al [20]. The LDA is applied using
the Hedin–Lundqvist form of the exchange–correlation functional [21]. A norm conserving
pseudopotential for Cu constructed according to a scheme proposed by Hamann et al [22] was
used which has already been successfully employed for calculations of the structure and the
phonons of low index surfaces of Cu [23]. A mixed basis set was then applied to represent the
valence states consisting of five d type local functions at each Cu site, smoothly cut off at a
radius of 2.3 au, and of plane waves with kinetic energy of 11 Ryd. The BZ integration was
carried out using the special point sampling technique [24] together with a Gaussian broadening
of the energy levels of 0.2 eV. For simulating surfaces the supercell consisted of 21–35 atoms
(1 atom/layer), depending on the surface orientation. Structure optimization was carried out
until the forces on all atoms were smaller than 10−3 Ryd au−1, which is two orders of magnitude
smaller than the forces present on the unrelaxed surfaces. Surface relaxations were found to
be sensitive to the number of k-points used in the calculations. Sampling between 30 and 60
points in the BZ gave converged results.

In place of the mixed-basis representation, it is common to use ab initio DFT codes in
which the Kohn–Sham equations are solved in a plane-wave basis. Codes such as the Vienna
ab initio simulation package (VASP) [25] and those provided by the group of Norskov and
Hammer [26] and Baroni et al [27] fall into this category. Typically, ultrasoft pseudopotentials
of the Vanderbilt type [28] are used [29, 31, 32, 6], for which a cut-off energy for the plane-wave
expansion of about 300 eV is found to give converged total energies for the system. BZ sampling
using a Monkhorst–Pack mesh [24], together with a Methfessel–Paxton smearing [33] of the
energy levels, produces reasonable results for Pd vicinals [29], for example. The Perdew–
Wang functional [18] for the description of the exchange and correlation within the GGA is
also invoked.
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3.1.2. Many body interaction potentials. To describe the interactions between the atoms
in model systems, several types of many body, semi-empirical potentials [15, 34, 16, 35] are
currently being used. Because of its familiarity, we present here some details of the EAM
developed by Foiles, Baskes and Daw. This is a semi-empirical, many body potential [15].
Although the EAM potentials neglect the large gradient in the charge density near the surface
and use the atomic charge density for solids, for the six fcc metals Ag, Au, Cu, Ni, Pd and Pt,
and their alloys, they do a good job of reproducing many of the characteristics of the bulk and
the surface systems [15]. We find EAM potentials to be reliable for examining the temperature
dependent structure and dynamics of Ag and Cu flat surfaces [36] and for describing the
energetics of Cu vicinals and self-diffusion processes on the (100) surfaces of Ag, Cu and
Ni [37, 38].

This method exploits the findings that:

(1) The ground state of an interacting electron gas is a unique functional of the total electron
charge density [17].

(2) The energy of an impurity in a host is a functional of the electron density of the unperturbed
host electron density [39].

That is, E = Fz,R(ρh), where ρh(R) is the electron density of the host without impurity at R,
the position where the impurity is to be replaced, and Z is the type of the impurity. Each atom
in a solid is viewed as an impurity embedded in a host consisting of all other atoms and thus
its energy is given by

Ei = Fi (ρi(Ri )) + 1
2

∑
j

ϕ(Ri j) (1)

where ρi is the electron density of the host without atom i and is defined as a superposition of
the f j , the electron densities of atoms j as a function of distance from its centre:

ρi =
∑
j �=i

f j (Ri j ), (2)

while Ri j is the distance between atoms i and j , Fi (ρi ) is the energy required to embed atom i
in electron density ρi and ϕ is a short range electrostatic pair potential between atoms i and j .
Hence, the total energy of a solid is simply a sum over all atoms in the solid and given by

Etot =
∑

i

Fi (ρi(Ri )) + 1
2

∑
i, j

ϕ(Ri j). (3)

It is further assumed that the electron density ρi is given by a linear superposition of the
electron densities of the constituent atoms which is taken to be spherically symmetric. The
EAM functions for the six fcc metals, Ag, Au, Cu, Ni, Pd and Pt and their alloys were
developed by numerically fitting the functions to the bulk lattice constants, cohesive energy,
elastic constants, vacancy formation energy and alloy heats of mixing. Using these interactions
for a model system constructed in its bulk terminated positions, the conjugate gradient method
is used to relax the system to 0 K equilibrium configuration. The dynamical matrix needed to
calculate the vibrational (or phonon) density of states for a system of interest is then obtained
from analytical expressions for the partial second derivatives of the EAM potentials [15].

3.2. Determination of the vibrational density of states

There are several theoretical techniques for calculations for surface and bulk phonons in
crystals. The most commonly used is the slab method in which one needs to diagonalize the
dynamical matrix portraying the interactions between the particles in N layers of the slab [40].



Structural relaxations, vibrational dynamics and thermodynamics of vicinal surfaces S3205

In the case of high Miller index surfaces, in particular vicinal surfaces with large terraces,
representative of large surface periodicities, slab calculations are hampered by the need for
huge slabs to describe the complexity of the surface structure. The continued fraction (CF)
method using a real space Green function is another way to proceed [41]. In this method the
surface matrix is treated as a perturbation to the bulk and the surface Green function is obtained
by projecting the bulk Green function into the subspace defined by the perturbation matrix.
Both slab and CF methods are developed in wavevector space. If the interest lies in gaining
insight into the local contributions to the dynamics and thermodynamics of systems possessing
site specific environments, a local approach in real space is perhaps more useful than one based
on k-space. The real space Green function (RSGF) method is one such method [42]. Instead of
wavevectors and BZs, one can focus on any ‘local’ region and analyse the effect of the rest of
the system on it. Since it does not require the system to be periodic, it is particularly suitable for
studying local vibrational densities of states in complex systems with defects and disorder. The
only prerequisite is that the interatomic potential between the atoms in the system be of finite
range, so that one can write the force constant matrix in a block-tridiagonal form. There is also
no a priori truncation in the system size, as would be the case for the matrix diagonalization
methods based on k-space. The real space Green function method also has an advantage
over the familiar ‘CF’ method [41] as it does not involve truncation schemes to determine the
recursion coefficients; rather, a more general and simpler recursive scheme is applied.

The first step in the application of RSGF method is to divide the system (with a finite
interaction range) into regions such that the Hamiltonian can be written in a block-tridiagonal
matrix as follows:

H =




. . .

vi,i−1 hi vi,i+1

vi+1,i hi+1 vi+1,i+2

. . .


 , (4)

where the sub-matrices hi along the diagonals are (3ni × 3ni ) square matrices and the sub-
matrices vi,i+1 along the ‘off-diagonals’ are matrices of dimension 3ni × 3ni+1 with n being
the number of particles in the locality. The Green function associated with the matrix H is
given by

G(z) = (z I − H )−1 (5)

where z = w2 + iε, ε being the width of the Lorentzian representing the delta function at w2,
and I is a unit matrix of the same size as H .

The diagonal elements of the Green function matrix which lead to the local Green function
matrix corresponding to any chosen locality are given by [42]

Gii = [(z I − hi) − vi,i+1�
+
i+1vi+1,i − vi,i−1�

−
i−1vi−1,i ]−1. (6)

(�+
i ) and (�−

i ) are defined as forward and backward partial Green functions and described by

�+
i = (z I − hi − vi,i+1�

+
i+1vi+1,i )

−1, (7)

�−
i = (z I − hi − vi,i−1�

−
i−1vi−1,i )

−1. (8)

The relation between the diagonal elements of the Green function matrix G is [42]

Gii = �±
i + �±

i vi,i∓1Gi∓1,i∓1vi∓1,i �
±
i . (9)

As seen in the above equations, in the method of the resolvent matrix, the calculation of Green
functions is reduced to a series of inversions and multiplications of matrices whose dimensions
are usually much smaller than the total degree of the system under consideration. Another
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feature of the method is that one can focus on any specified locality in the system and calculate
the corresponding Green function, a diagonal element of the Green function representing the
entire system. This can be achieved through the forward and backward partial Green function
matrices �±

i (see equation (9)).
In this paper the real space Green function is used to calculate the local vibrational density

of states through a layer-by-layer approach in which an infinite system with some periodicities
is viewed as a stack of two dimensional atomic layers, stacked upon one another, along some
crystal axis. Hence, the elements of the sub-matrices in the block-tridiagonal matrix describe
the force constants between the particles within and between the associated localities containing
a certain number of two dimensional atomic layers [43].

The normalized vibrational density of states is given by the function

g(ω2) = − 1

3nπ
lim
ε→0

Im Tr[G(ω2 + iε)]. (10)

The frequency dependent vibrational density of states N(ω) follows directly from

N(ω) = 2ωg(ω2). (11)

3.3. Determination of vibrational free energy

In a set of studies we have employed the harmonic approximation of lattice dynamics to
calculate the local and excess vibrational free energy for vicinal surfaces of interest [11–
13, 44]. We expect the results summarized here to be valid for low temperatures, which for
vicinals of Cu and Ag surfaces would be up to 500 K. The main quantity of interest here is
the vibrational contribution to the free energy of the stepped surfaces. While details of the
calculations may be found in [12], we include the main points here.

The free energy of a system is given by the standard definition F = U − T S, where U is
the internal energy, S is the entropy and T is the temperature. Both U and S have contributions
from atomic configurations and vibrations, such that F = Fconf + Fvib. That is, for each
atomic configuration of the system there is a specific vibrational contribution, which can be
further written as Fvib = U vib − T Svib. It is this latter quantity that we calculate here for the
five surface systems of interest, for their relaxed atomic configurations (of minimum energy)
at 0 K. In the harmonic approximation, the free energy is given by

Fvib = kBT
∫ ∞

0
ln

(
2 sinh

(
x

2

))
N(ν) dν. (12)

Here x = hν/kBT and N(ν) is the vibrational density of states (as a function of
frequency ν) which can be written as N(ν) = ∑

l nl(ν), where nl(ν) is the local density
of states (LDOS) of atoms in layer l.

To calculate the vibrational contribution to the free energy of a surface (flat, stepped,
kinked, . . .) we consider a slab of N atoms, arranged such that the top and bottom surfaces
consist of the Miller index planes. The surface free energy, which is defined as the excess over
the values associated with the bulk system, is evaluated using the following expression:

Fvib
SUR = (Fvib

SLAB − N Fvib
BULK)/(2A). (13)

In the above equation, Fvib
SLAB and Fvib

BULK are, respectively, the vibrational free energy calculated
for a finite slab representing the surface system and a single bulk atom; A is the surface area
of the system. The factor 2 arises from the fact that the system contains two free surfaces.

In the same vein, the step vibrational energy is defined as the excess energy over that for
a flat surface of the same geometry as the terrace. The vibrational contribution to the step free
energy is then calculated using the following equation [45]:

Fvib
STEP = Fvib

S (θ) − (p − 1 + f )Fvib
S (∞), (14)
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Table 3. Experimental data on the relaxation of metal vicinal surfaces as changes from the bulk
separation (in %).

Surface Experiment �d12 �d23 �d34 �d45 �d56 �d67 �d78 �d89

Cu(311) LEED [58] −7.3 +3.7 0.0
Cu(311) LEED [59] −11.9 +1.8
Cu(511) X-ray [51] −15.4 +8.1 −1.1 −10.3 +5.4 −0.7 −6.9 +3.6
Cu(511) LEED [50] −13.2 −6.1 +5.2 −0.1 +2.7
Cu(211) LEED [60] −14.9 −10.8 +8.1
Cu(331) LEED [47] −13.8 +0.4 +4.0 −4.0
Cu(711) LEED [52] −13 −2 −10 +7 −1 −4 +7
Cu(320) QLEED [61] −24 −16 +10
Cu(210) LEED [62] −11.12 −5.68 +3.83 +0.06 −0.66
Pt(210) LEED [63] −23 −12 +4 −3
Al(210) LEED [64] −16 −1 +9 −4 −1
Al(311) LEED [65] −13 +9
Al(331) LEED [66] −11.7 −4.1 +10.3 −4.8
Ni(311) LEED [67] −15.9 +4.1 −1.6
Ag(410) LEED [46] 0 −36 +18
Pd(210) LEED [68] −3 +7 +3 −1
Pd(320) LEED [69] −15 −9 −6 +15 +6

where Fvib
STEP is the vibrational step free energy, Fvib

S (θ) and Fvib
S (∞) are the vibrational surface

energies corresponding the vicinal and the flat surface forming the terraces of the vicinal surface
and p is the number of atomic chains on the terrace. f is a geometrical factor determined by
the projection of the ledge on the terrace and it is 2/3 for (211), 1/3 for (331) and 1/2 for
(511). The vibrational surface free energies in the above equation, as the excess energies over
the bulk, are calculated using

Fvib
S =

n∑
i

Fvib
i − Fvib

b , (15)

where Fvib
i and Fvib

b are the vibrational free energies for the atoms in layer i and in the bulk
and calculated using equation (1) with the local density of states associated with the layer of
interest.

4. Results

4.1. Multilayer relaxations

In tables 3–5, we have summarized the calculated and observed relaxation patterns of vicinals
of fcc transition metals that we are aware of. The list is by no means complete and entries are
not available for every transition metal of interest. Most of the work appears to be on Cu and
Pd surfaces with a few studies on Ag, Ni, Al and Pt. The surface geometries and step face
orientations of ten of them have been summarized in table 1. The geometry of the others is
related to those of the basic six illustrated in figure 3 except for the number of atoms in the
terrace. Thus (711), (911), (11 1 1) and (17 1 1) are vicinals of fcc(100) with four, five, six and
nine atoms on each terrace and (111) step face with the notation (2n − 1 1 1). On the other
hand, (510), (710) and (910) have (100) terraces of five, six and nine atoms, respectively, with
a (110) microfaceted step face. Similarly, (430) has a four atom wide (110) terrace with a
(100) microfaceted step face. To avoid confusion we have summarized the experimental data



S3208 T S Rahman et al

Table 4. First principles calculations of the relaxation of metal vicinal surfaces as changes from
the bulk separation (in %).

Surface Method �d12 �d23 �d34 �d45 �d56 �d67 �d78 �d89

Cu(311) PPPW [31] −15.0 +4.0 −0.6 −1.1 +0.4 −0.7 0.0
Cu(511) PPPW [19] −9.3 −10.7 +7.2 −2.9 +1.1 +1.7 −1.5 +1.6
Cu(511) PPPW [31] −11.1 −16.4 +8.4 −4.6 +2.3 −1.5 +0.2 +0.8
Cu(711) PPPW [19] −7.3 −1.5 −14.8 +8.0 −1.0 −1.1 +1.4 +1.7
Cu(711) PPPW [31] −9.3 −7.7 −21.8 +14.3 −3.0 −9.1 +5.6 −0.2
Cu(911) PPPW [19] −11.2 −2.2 +0.6 −13.9 +5.4 −1.3 −4.1 +4.5
Cu(911) PPPW [31] −7.4 +0.8 −10.5 −23.3 +25.9 −0.5 −4.1 −10.5
Cu(1 1 11) PPPW [31] −8.3 −2.7 −1.7 −10.7 −19.9 +26.3 +1.9 −4.0
Cu(211) PPPW [19] −12.2 −9.5 +8.7 −2.1 −1.6 +1.5 −0.1 −0.3
Cu(211) PPPW [70] −14.4 −10.7 +10.9 −3.8 −2.3 +1.7 −1.0 −0.05
Cu(211) FLAPW [71] −28.4 −3.0 +15.3 −6.6 +0.7 +3.0
Cu(331) PPPW [19] −12.7 −3.3 +4.9 −2.0 +0.1 −0.1 +0.8 −0.6
Cu(331) FLAPW [71] −22.0 +1.6 +6.9 −2.4 −0.6 −0.4
Cu(210) PPPW [30] −13.4 −6.2 +5.3 +0.6 −1.7 −0.9 +0.6
Cu(510) PPPW [31] −9.2 −6.4 −2.8 −21.8 −7.3 +20.4 −1.7 −6.2
Cu(710) PPPW [31] −15.6 −8.4 −3.2 −9.0 −10.3 −20.1 +0.5 +24.5
Cu(910) PPPW [31] −15.5 −8.9 −11.1 −0.1 −4.4 +6.1 +10.1 −33.2
Pd(210) PPPW [32] −17 −3 +10 −4
Pd(211) PPPW [29] −12.3 −13.0 +17.4 −6.1 −2.0 +3.6 −2.7 0.0
Pd(331) PPPW [29] −12.0 −7.7 +10.9 −4.8 +0.2
Pd(320) PPPW [29] −15.5 −18.0 +1.8 −11.6 +22.8 −8.2 −3.1 +6.3
Pd(320) PPPW [30] −11.9 −19.2 −0.6 −5.9 +16.8 −4.5 −3.2
Pd(551) PPPW [29] −8.8 −15.7 −3.4 −6.5 +18.5 −6.9 −1.7 +2.8
Al(331) CP [72] −11.3 −6.3 +10.1 −4.4 −1.8 +4.8

Table 5. Relaxation of metal vicinal surfaces as changes from the bulk separation (in %) obtained
using model potentials.

Surface Method �d12 �d23 �d34 �d45 �d56 �d67 �d78 �d89

Cu(311) EAM [73] −8.9 +3.8 −3.6 +2.0 −1.3
Cu(311) EMT [74] −6.6 +3.1 −2.9 +1.5 −1.0
Cu(511) EAM [75] −8.9 −7.2 +8.3 −3.8 −3.6 +4.6 −1.6 −1.5
Cu(711) EAM [75] −10.0 −5.3 −9.7 +13.8 −4.5 −4.5 −4.6 +3.0
Cu(11 1 1) EAM [75] −14.1 −3.8 −3.7 −6.2 −12.5 +23.9 −5.1 −3.3
Cu(310) EAM [75] −11.9 −10.3 +2.9 +5.5 −3.9 −3.7 +4.2 +2.0
Cu(211) EAM [75] −9.8 −4.8 +6.9 −5.2 −1.0 +3.7 −2.4 −0.2
Cu(331) EAM [75] −9.9 +1.8 −1.5 −0.2 −0.3 +0.5 −0.4 +0.1
Cu(551) EAM [75] −5.4 −11.9 +6.0 −7.2 +3.1 +1.3 −4.4 +2.6
Cu(410) EAM [53] −12.7 −8.7 −11.6 +6.2 +9.2 −4.6 −5.5 −3.6
Cu(320) EAM [44] −13.1 −9.0 +3.1 −8.1 +10.0 −5.5 −1.6 +3.0
Ag(320) EAM [76] −9.8 −10.4 +1.1 −5.9 +7.0 −3.3 −1.8 +2.8
Ag(410) EAM [44] −11.6 −5.3 −9.9 +2.1 +6.7 −3.9 −3.7
Ni(320) EAM [76] −9.0 −5.4 +2.8 −5.1 +6.4 −3.7 −0.7 +2.0
Pd(320) EAM [76] −20.3 −19.3 −0.6 −14.0 +18.3 −8.8 −3.8 +6.1
Pd(430) EAM [76] −22.7 −9.3 −24.4 +2.2 −10.8 −13.6 +28.7 −8.1

in table 3, the theoretical results from ab initio calculations in table 4 and those from EAM
potentials in table 5. A number of the surfaces reported in tables 4 and 5 have been studied
by several groups using related techniques; where possible we have given references to these
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papers. In general we have not found significant deviation in the results, except for one case
which we will mention below.

A quick glance at table 3 confirms that for the entire set of transition metals for which
experimental data are available, the step atoms move inwards by a noticeable amount. The
�di j in the table are the deviations (in %) of the separation between atoms in layers i and
j from the spacing in the bulk. The labellings of the layers and the interlayer separations
�di j are illustrated in figure 4. With a few exceptions the experimental values of the
inward relaxations of the step atoms on these surfaces are about 12%–15%. This estimate
is approximate since experimental data contain an error bar of about 4%. Nevertheless, the
uniformity of the results is striking. It is also clear from table 3 that atoms other than those
at the step may also undergo impressive relaxations and that for some atoms the relaxation is
outwards. We should note that the experimental values of relaxations for Ag(410) appear to be
anomalous. Apparently there were some problems in the analysis of the data [46] because of
the uncertainties in measuring small changes in bond lengths from an earlier LEED analysis
program. Although this situation has improved considerably with the newer versions of the
programs [47], extraction of multilayer relaxations from experimental data is a daunting task.
It is thus impressive that experiments are able to detect spacing changes for several layers
into the bulk, as is the case for Cu(511) and Cu(711), from very detailed low energy electron
diffraction (LEED) analysis. For surfaces in table 3 for which results are available for only
the top two or three layers, it is difficult to predict a pattern.

A better sense of the trends in the multilayer relaxations is perhaps obtained from
examining the entries in tables 4 and 5 which have been obtained from calculations. For
all surfaces considered, regardless of the terrace width and whether ab initio methods or model
interaction potentials were used, the step atoms undergo a significant inward relaxation. There
is also broad quantitative agreement between the results obtained from ab initio calculations,
model potentials and experimental data for relaxations of the step atoms, with one exception.
It is not clear to us why the full potential linear augmented plane-wave method (FLAPW)
gives results for the relaxations of the step atoms of Cu(211) and Cu(331) that are so different
from those from the pseudopotential plane-wave (PPPW) method and experimental data. We
are in the process of repeating these calculations to locate the reason for these differences.
Nevertheless, the trends in the multilayer relaxations from the FLAPW method are very similar
to those from other methods. All calculations in tables 4 and 5 show the relaxations on stepped
Cu, Pd, Al, Ni and Ag to persist on all surfaces for a large number of layers. Of course, the
concept of layers is different here from that for flat surfaces (see figure 4). The first n layers,
for example, are all exposed to the vacuum, where n is the number of atoms on the terrace.
Correspondingly, the interlayer separations are small and even large percentage changes in
interlayer separations correspond to small numbers in distances. It is important to bear this
point in mind when comparing the results for a particular surface either with those for flat
surfaces or with the results from other methods.

A common feature of all surfaces examined in table 4 is that all terrace atoms except for
the ones in the corner chain (CC) undergo significantly large inwards relaxations. The corner
atoms are always found to relax outwards. Additionally, the atoms in the terrace adjacent
to CC exhibit comparatively large inward relaxations whose magnitude maybe larger than
that for the step atoms (SC). For example, for Cu(511), Cu(711) and Cu(911), the changes,
respectively, in d23 (involving TC1), d34 (involving TC2) and d45 (involving TC3) are larger
than that of d12. These trends are in qualitative agreement with LEED data on Cu(511) and
Cu(711) and with Schmolkowski’s [48] ideas of charge smoothing, such that the maximum
relative change in interlayer separation is focused around the corner atoms. The situation with
the more close packed surface Cu(331) is somewhat different. In figure 5 we have plotted
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Figure 5. The relaxation patterns for Cu(331), Cu(511) and Cu(211) show the effect of a small
difference in the local geometry.

the relaxation patterns for Cu(331), Cu(511) and Cu(211) to show the influence of the local
coordination of Cu(331) on its relaxation pattern. The change in �d23 is much smaller on
Cu(331) than on the other two surfaces.

While the predicted relaxation patterns for Cu surfaces from ab initio electronic structure
calculations are in reasonable agreement with those from semi-empirical potentials, there is
a remarkable difference. An intriguing result for multilayer relaxations of the vicinals of
Cu(100) obtained with EAM potentials in [37] was that the pattern of inward and outward
relaxations continued well into the bulk with an exponentially decreasing amplitude, as shown
very nicely for Cu(17 1 1) in figure 6. Tian and Rahman [37] found this oscillating behaviour
and decay to be characteristic of a set of vicinals of Cu(100). Since for Cu(711) we also
have experimental data available, it is worthwhile to compare the pattern obtained from EAM
potentials and ab initio calculations for this surface. The relaxation pattern predicted by EAM
is (− − − +,− − − +,− − − +, . . .) with an eventual damping of the relaxations. The pattern
for Cu(711) from table 4 is instead (−−− +,−−+ +,−− + +) and does not reflect a decaying
amplitude as we move into the bulk. Furthermore, the ab initio result is more in agreement
with experimental data. A long time back Allan [49] also predicted an oscillatory, damped
relaxation of atoms at surfaces on the physical basis of charge oscillations in crystals. It
is thus surprising that this interesting result is not corroborated by experiment and ab initio
calculations. Since there is a good margin for error in each analysis, it would be interesting to
look at data for other surfaces when they become available, to achieve further understanding.

The ab initio results for Pd surfaces in table 3 obtained by Makkonen et al [29] also display
very similar behaviour to their Cu counterparts. The results for Pd(320) and Pd(551) provide
an even stronger argument for the association of the outward relaxation with that of the least
undercoordinated surface atom. Because of the open structure of the fcc(110) terraces of these
two surfaces, it is the atom in the fifth layer (with the layers defined as for vicinal surfaces
(figure 4)) with coordination number 11 that is the last one exposed to the vacuum. These
atoms are thus forced to move outwards so as to smooth the charge density on the terrace. This
particular result is further corroborated by the results from EAM potentials on several vicinals
of Pd(110), Cu(110), Ag(110) and Ni(110). For such vicinals with three atom wide terraces,
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Figure 6. Multilayer relaxation of Cu(17 1 1) showing the oscillatory nature of the relaxation
pattern and the damping of its amplitude (courtesy Z Tian and T S Rahman).

the most prominent outward relaxation is found for �d56. On the other hand, for vicinals of
Cu(111), Cu(100), Al(111), Pd(100) and Pd(111) with three atom wide terraces, impressive
outward relaxation appears for �d34. For vicinals of fcc(100), the outward relaxations of d45

for Cu(711), d56 for Cu(911) and d67 for Cu(11 1 1) from ab initio calculations (table 4) and
EAM potentials (table 5) also point to an interesting characteristic of the least undercoordinated
surface atom. Calculations of relaxations of Cu(311) and Cu(210), in table 4, each with a two
atom wide terrace, of fcc(100) and fcc(110) geometry, with outward relaxations of d23 and
d34, respectively, provide the same conclusion. Multilayer relaxations of Pd(430), a vicinal of
Pd(110) with a four atom wide terrace, in table 5, indicate outward relaxation for d78 which is
once again that for the least undercoordinated surface atom.

We now turn to a comparison of the theoretical results in tables 4 and 5 with the
experimental ones in table 3. For Cu(311) there appears to be excellent agreement between
data and theoretical results. First principles calculations suggest a larger inward relaxation
of the step atom than concluded from the analysis of experimental data. However, given
the uncertainties in determining changes in these small distances, the qualitative agreement
between two sets of data and both types of calculation for Cu(311) is remarkable. Experimental
data on Al(311) and Ni(311) show a very similar trend in behaviour to Cu(311). While
calculations are not yet available for these two surfaces, it is unlikely that they will be in
qualitative disagreement with the data. Turning to the relaxations of vicinals of Cu(111) of
the A and B types, experimental and theoretical results for both Cu(211) and Cu(331) are in
general overall agreement, apart from quantitative differences between results from FLAPW
calculations and the others, as already mentioned. The slight discrepancy in the results for
LEED data for d23 and calculations may also be ignored because of the error margin of 4% in
the analysis of the data and a similar one among the different types of calculation. LEED data
on Al(331), in table 3, display a very similar trend to those for Cu(331) and are in excellent
agreement with the results of ab initio calculations in table 4.

The case of multilayer relaxations for Cu(511) is interesting because of the differences
between published data from LEED [50] and x-ray measurements [51]. Except for the displace-
ment of the step atoms, for which all results point to a large inward relaxation, the results from
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x-ray scattering measurements are in disagreement with theoretical results and with those from
LEED. We do not understand the reasons for this disagreement. It should be noted that the
differences from the x-ray results are both qualitative and quantitative, beyond the established
error bars in the experiments and calculations.

Comparison of theoretical results for Cu(711) with those in table 3 from LEED data shows
that the ab initio results are in excellent agreement with the data and that the small differences
from the EAM results that the authors [52] had noted is removed. As in the case of Cu(511), the
largest percentage change in the interlayer spacing is not for d12. In this case it is for d34 which
separates CC from TC2. As before, there is outward relaxation of the spacing between CC
and BNN. The fact that relaxations near CC remain strong even as the terrace width increases
is interesting in itself.

The recently obtained data on the relaxations of Cu(210) (table 3) surfaces have now been
shown to be in excellent agreement with results from ab initio calculations (table 4). The trend
(− − +) for the relaxation of the top three layers is borne out in the LEED data for Pt(210)
and Al(210), shown in table 3. Similarly the QLEED results for relaxations of Cu(320) are
qualitatively reflected in EAM calculations in table 5.

This brings us to a discussion of the experimental results for vicinals of Pd(110). For both
Pd(210) and Pd(320), the experimental data are not in full agreement with results of ab initio
calculations (or those from EAM potentials). The trend for Pd(210) is reported to be (− + +)

in LEED data, in table 3, and (− − +) in ab initio calculations. Since experimental data on
Pt(210), Al(210) and Cu(210) exhibit the trend (− − +), we suggest that the LEED data on
Pd(210) be re-examined. It could be that the difference in theoretical and experimental values
comes from an assumption in the data analysis. Similar is the case for Pd(320) for which two
sets of ab initio calculations and those from EAM potentials show the trend (− − + − + −)

while LEED data reveal the oscillation to be (− − − + +). In figure 7, we have plotted the
relaxation patterns for the (320) surfaces of Pd, Cu, Ag and Ni, using EAM potentials. The
trend is undoubtedly the same; i.e., the strongest outward relaxation is that of the fifth layer
atom. It would thus be helpful to have a re-examination of the LEED data for Pd(320). In
table 5, we have also included the relaxations for Pd(430) which also displays the same trend as
shown in theoretical results for all the surfaces considered so far—namely, the striking outward
relaxation is that of the least undercoordinated surface atom. In the case of Pd(430) this is the
atom in the seventh layer.

Unlike flat surfaces, vicinal surfaces relax in both x and z directions, since the existence
of steps at the surface leads to broken symmetry in both of these directions. While relaxations
along the z direction yield characteristic interlayer separations that we have discussed above,
those along the x direction provide new registries of atoms, as compared to those in the
bulk. Our percentage intralayer registries from ab initio calculations of several surfaces are
summarized in table 6. As in the observations from EAM calculations [53], the changes
in the registries of the atoms are small. However, the changes in registries of the atoms
are not inconsequential since they affect the changes in the bond lengths between the atoms
in these regions of low coordinations. In table 7, we tabulate results for the total changes
in the distances between the step atoms and their nearest neighbours for some surfaces. For
comparison we include results from ab initio calculations and EAM potentials (in parentheses).
The largest changes in the bond lengths are for those between the step atoms and their bulk
nearest neighbour (BNN) which lies right below them. The bonds between CC and the BNN
show small enlargement, while all other bonds in table 7 are found to undergo shortening. A
plot of the changes in the bond lengths, in figure 8, between SC and its nearest neighbours for
Cu(711), Cu(911) and Cu(17 1 1) shows that the effect is independent of the terrace width and
thus is local.
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Figure 7. Multilayer relaxation of the (320) surface for Pd, Cu, Ag and Ni showing the generality
of the relaxation pattern.

Table 6. Calculated changes in the registries as percentages of that for the ideal surface rb (in %).

Registry Cu(211) [19] Cu(331) [19] Cu(511) [19] Cu(711) [19] Cu(911) [19] Cu(210) [30]

rb 2.083 Å 2.048 Å 2.454 Å 2.500 Å 2.519 Å 1.644 Å
r12 −1.22 −0.10 −1.17 −1.37 +0.99 −0.84
r23 −0.54 −1.74 −1.21 −0.32 −0.40 −1.17
r34 −0.22 +1.46 +0.98 −0.41 +0.28 +1.96
r45 +1.50 +0.62 +0.25 +0.77 −0.60 +0.02
r56 −0.26 −0.50 −0.31 +0.23 +0.38 −0.50
r67 +0.19 +0.24 +0.01 +0.82 −0.01 −0.02
r78 0.00 −0.19 0.00 −0.89 +0.55
r89 −0.11 +0.23 −0.14 −0.01 +0.16
r9,10 −0.31 −0.44
r10,11 −0.20 −0.14
r11,12 +0.11 +0.40
r12,13 −0.23
r13,14 −0.25

Table 7. Changes (in %) in bond lengths between the step atom and its nearest neighbours. The
results from EAM are in parentheses.

Surface SC–TC SC–CC SC–BNN CC–BNN

Cu(211) −1.78(−1.27) −2.27(−2.67) −3.22(−2.10) +0.61(+0.7)

Cu(331) −1.36(−0.45) −2.39(−1.86) −3.66(−3.09) +1.42(+0.5)

Cu(511) −1.80(−2.29) −1.42(−0.98) −3.13(−2.30) +1.49(+1.5)

Cu(711) −1.59(−2.16) −1.36(−1.11) −2.88(−2.26) +1.06(+1.8)

Cu(911) −1.22(−2.08) −1.47(−1.06) −3.06(−2.31) +0.51(+1.93)

In figure 9 contour plots of the charge densities for Pd(211) surface are presented [54].
The plots have been drawn to give a cross sectional view of the plane passing through the step,
the terrace corner and the BNN atoms. There is considerable charge redistribution near the step
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Figure 9. A cross sectional view of the changes in the electronic charge densities near steps.

edge and near the CC and BNN, but not near TC. The effect of the presence of the step is thus
very much localized near the disturbance. For vicinals with larger terrace width than (211),
the inhomogeneity due to the presence of steps would be even further localized to the step and
corner atoms. The rest of the terrace atoms would behave just as on the mother surface, which
in this case is Pd(111). The total electronic densities of states of the four regions of interest
on Pd(211) [54] are displayed in figure 10. The reduced coordination of the step atom (SC)
is reflected in the shift of the d-band centre towards the Fermi level and the narrowing of the
density of states. The effect is much less on TC and CC and that of BNN is almost bulk like. It
is reasonable to assume from discussions here that the electronic structural changes on vicinal
surfaces are confined to local regions near the step and corner atoms.
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Figure 10. The layer resolved electronic density of states of Pd(211) determined by DFT-GGA
calculations.

4.2. Changes in interatomic force constants

To appreciate the implications of multilayer relaxations of vicinal surfaces, we now turn to an
examination of the force constant matrices associated with them. In tables 8–10 we present
the force constant matrices kαβ , where α and β stand for Cartesian components as obtained
from EAM potentials between the SC atoms and their neighbours on the Cu(211), Cu(511) and
Cu(331) surfaces, respectively. The force constants kxx between the SC atoms in the direction
perpendicular to the step, in the surface plane, are softened by 86% for Cu(211), 93% for
Cu(511) and 85% for Cu(331), relative to their counterparts in the bulk, due to the loss of
neighbours. This unpreventable softening causes the density of states for the step atom along
the x direction to be shifted strongly to lower frequencies. Such softening in the force constant
between SC atoms has also been reported for Ni(977) [4, 13] and for Au(511) [43]. The kzz

elements between SC and BNN atoms on Cu(211), Cu(511) and Cu(331) are, respectively,
stiffened by 30, 35 and 45%. The stiffening of this force constant on Cu(331) and Cu(511)
is obviously the reason for the strong contraction in their bond length. From the tables we
also notice that the existence of steps on the surface induces changes not only in the diagonal
elements of the force constant matrices of the surface atoms, but also in the off-diagonal
elements. For example, kxz and kyz between SC and BNN atoms on Cu(511) are stiffened by
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Table 8. Force constant matrices kαβ in (eV Å−2/unit mass) for the interactions between the SC
atom on Cu(511) and its nearest neighbours (on the surface and in the bulk).

Surface Bulk

Atoms x y z x y z

x 0.0057 0.0167 −0.0050 0.0887 0.0000 −0.0044
SC–SC y −0.0167 −1.6104 −0.2388 0.0000 1.9777 0.0000

z −0.0050 0.2388 0.0380 −0.0040 0.0000 0.1030

x −2.1859 0.0000 −0.8307 −1.8234 0.0000 −0.5452
SC–TC y 0.0000 0.0678 0.0000 0.0000 0.0875 0.0000

z −0.3896 0.0000 −0.1067 −0.5452 0.0000 −0.0499

x −0.9416 −0.7116 0.6304 −0.8418 −0.7037 0.7594
CC–SC y −0.7637 −0.4282 0.4892 −0.7037 −0.4205 0.5598

z 0.8832 0.6337 −0.5432 −0.7594 0.5598 −0.5238

x −0.0683 0.3926 −0.5996 −0.0769 0.3062 −0.4846
BNN–SC y 0.3822 −0.5201 1.0726 0.3062 −0.4205 0.8454

z 0.6337 1.1648 −1.7441 −0.4846 0.8454 −1.2888

30 and 35%, respectively. In table 11, we present the force constant matrices between two of
the step atoms and between a step atom and a corner and a BNN atoms, for a relaxed surface
of Ni(977) (‘Surface’) and the corresponding ones in the bulk (‘Bulk’). Force constants are in
eV Å−2/unit mass. As seen from table 11, the reduction in the coordination results in a large
softening of the force constant matrix elements between two steps atoms: 71% along x (kxx )
and 13.7 along y (kyy), as compared to their counterparts in the bulk. Note that on Ni(111),
kyy, between neighbouring atoms in the top layer, is reduced by 5.7% from the bulk value. We
also find a stiffening of 26% in the force constant between SC and CC atoms and of 17.2%
in the force constant between SC and BNN atoms, both along the z direction (kzz). Just as
a softening in force constants tends to shift the frequencies toward lower values, a stiffening
may lead to the creation of higher frequency modes which may appear above the bulk band or
remain inside it as a resonant mode. In the following section we present the local vibrational
density of states of the surface atoms of several vicinal surfaces and discuss the implications
of the change in the force fields in the vicinity of the steps on the vibrational modes.

4.3. Local vibrational density of states

As an example, we present the calculated local density of states (LDOS) for the step and
the terrace atoms of Ni(977) and compare them with those for the Ni(111) surface atoms in
figure 11. It is interesting that the LDOS of the Ni(977) terrace atoms is very similar to that of
Ni(111). This result suggests that in studies of phonons of vicinal surfaces with relatively large
terraces, as in (977), or on realistic surfaces with non-regularly distributed steps, it is feasible
to use a local approach to determine the phonons of the step and its surrounding atoms, while
resorting to standard techniques for calculating phonons of the close packed flat surface for
the terrace. Another interesting feature in figure 11 is that the low frequency modes associated
with the step atoms display a global shift to lower frequencies, to the modes associated with
the terrace (and Ni(111) surface atoms), thereby pointing to an extra softening of relevant force
constants, in agreement with suggestions of Niu et al [4]. As we have seen in table 11, force
constants between the surface atoms undergo both softening and stiffening.

In our work on Ni(977) [13], we have shown that the most prominent, low frequency
mode is at 3.3 THz with maximum displacement along the x direction. For along the y and
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Table 9. Force constant matrices kαβ in (eV Å−2/unit mass) for the interactions between the SC
atom on Cu(211) and its nearest neighbours (on the surface and in the bulk).

Surface Bulk

Atoms x y z x y z

x 0.0122 0.0613 0.0071 0.0931 0.0000 0.0079
SC–SC y −0.0613 −1.6129 −0.2330 0.0000 −1.9777 0.0000

z 0.0071 0.2330 0.0008 0.0079 0.0000 0.0987

x −1.3793 0.8954 −0.6340 −1.2838 0.8500 −0.4907
SC–TC y 0.8727 −0.4276 0.3859 0.8500 −0.4204 0.2932

z −0.3259 0.2036 −0.1298 −0.4907 0.2932 −0.0818

x −1.6344 0.0000 1.0355 −1.2837 0.0000 0.9814
CC–SC y 0.0000 0.0898 0.0000 0.0000 0.0875 0.0000

z 1.3683 0.0000 −0.7534 0.9814 0.0000 −0.5897

x 0.1237 0.0162 −0.0582 0.0931 −0.0069 −0.0040
BNN–SC y −0.0140 −0.5070 1.1120 −0.0069 −0.4204 0.8991

z −0.0770 1.9530 −1.9071 −0.0040 0.8991 −1.4587

Table 10. Force constant matrices kαβ in (eV Å−2/unit mass) for the interactions between the SC
atom on Cu(331) and its nearest neighbours (on the surface and in the bulk).

Surface Bulk

Atoms x y z x y z

x 0.0149 0.0456 −0.0008 0.1034 0.0000 −0.0038
SC–SC y −0.0456 −1.6045 −0.2369 0.0000 −1.9777 0.0000

z −0.0008 0.2369 −0.0055 −0.0038 0.0000 0.0883

x −1.2389 −0.7979 −0.6305 −1.2436 −0.8310 −0.5361
SC–TC y −0.7815 −0.3905 0.3957 −0.8310 −0.4204 −0.3432

z −0.3288 −0.2154 −0.1622 −0.5361 −0.3432 −0.1220

x −0.6906 0.6684 0.7882 −0.5914 0.5903 0.7704
CC-SC y 0.7191 −0.4868 −0.7498 0.5903 −0.4204 −0.6782

z −0.9997 −0.8795 −0.9733 0.7704 −0.6782 −0.7741

x −0.0153 0.0456 −0.7127 −0.0053 0.0000 −0.4649
BNN–SC y 0.0000 0.1392 0.0000 0.0000 0.0875 0.0000

z −0.7140 0.0000 −2.7106 −0.4649 0.0000 −1.8681

z directions we found noticeable peaks, at low frequencies, at 3.9 and 4.9 THz, respectively.
There was also a prominent high frequency peak at 9.1 THz, close to the top of the bulk band.
The displacement vectors of the atoms for a mode at a given frequency were found from the
imaginary part of the Green function. The polarization of the mode at 3.3 THz is shown
in figure 12. Note that this mode is quasi-one dimensional: it involves only the concerted
motion of the SC and CC atoms in conjunction with that of the TC atoms. The step atoms
alternate with displacement vectors (+1, 0,−0.67) and (−1, 0, +0.67), the corner atoms with
vectors (+0.27, 0,−1) and (−0.27, 0, +1) and the TC atoms with vectors (0, +0.24, 0) and
(0,−0.24, 0). Thus the step and the corner atoms move in the xz plane, while the TC atoms
move along the y direction to accommodate the propagation of this mode along the direction
parallel to the step. The rest of the atoms are at rest. The wavelength of the mode is 2× nearest
neighbour distance or 4.978 Å and its wavevector q = (0.0, 1.262 Å−1, 0.0). This is a super-
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atoms.

Table 11. Force constant matrices (in eV Å−2/unit mass) between the step atom and it neighbours
on Ni(977).

Surface Bulk

Atoms x y z x y z

x 0.0236 0.1489 0.0044 0.0816 0.0000 0.0058
SC–SC y −0.1489 −2.6386 −0.2796 0.0000 −3.0568 0.0000

z 0.0044 0.2796 −0.0050 0.0058 0.0000 0.0805

x −1.5876 0.0000 1.7094 −1.3359 0.0000 1.5649
SC–CC y 0.0000 0.0966 0.0000 0.0000 0.0753 0.0000

z 2.0976 0.0000 −2.0658 1.5649 0.0000 −1.6342

x −0.0411 −0.3809 −0.6780 −0.0314 0.2890 −0.4983
SC–BNN y −0.3225 −0.7339 −1.5004 0.2890 −0.7026 1.3300

z −0.6080 −1.5720 −2.5342 −0.4983 1.3300 −2.1632

localized mode since the motion is restricted to the step atoms and their immediate neighbours
on the surface. Modes like this exist on a number of vicinal surfaces. In table 12, we present
a summary of the frequencies of the observed modes and refer the reader to discussions in
related papers.

4.4. Vibrational free energies of vicinal surfaces

We now turn to a summary of the impact of undercoordination on the vibrational contribution
to the thermodynamic properties of vicinal surfaces with a few specific examples. In figure 13,
we show the vibrational LDOS for the step (SC), terrace (TC) and corner (CC) atoms of
Cu(511), Cu(211) and Cu(331). The shift towards low frequencies, in each case, reflects the
lower coordination of these atoms. There are some differences in LDOS between the sets of
atoms on the three surfaces. On Cu(331), for example, the corner atom is almost bulk like while
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Figure 12. The displacement pattern of the step localized vibrational mode on Ni(977) (courtesy
A Kara et al, JCP).

Table 12. Observed (‘Exp.’) and calculated (‘Th.’) vibrational modes on metal vicinal surfaces,
in THz.

Surface Method Modes

Cu(511) Exp. HAS [2] 1.51, 2.76, 3.24, 3.84
Cu(511) Exp. EELS [3] 3.41
Cu(511) Th. EAM-LD [3] 7.51, 7.80
Cu(511) Th. EAM-RSGF [12] 2.25
Cu(511) Th. EAM-LD [73] 1.1, 1.2, 1.6, 2.3, 2.8, 3.0, 3.25, 3.35, 6.4
Cu(211) Exp. HAS [2] 1.32, 1.82, 2.52, 2.62, 2.66, 3.36
Cu(211) Exp. EELS [3] 3.24, 8.16
Cu(211) Th. EAM-LD [3] 2.35, 6.22, 7.51, 7.80
Cu(211) Th. EAM-RSGF [12] 2.52
Cu(211) Th. TB-LD[77] 2.50, 2.78, 3.25, 3.59, 6.20
Cu(211) Th. DFT-PW [70] 2.76, 2.98, 5.93
Cu(211) Th. EAM-LD [73] 1.2, 1.6, 2.3, 2.5, 2.8, 2.9, 3.3, 4.0, 4.2, 5.7, 6.3, 6.8
Cu(331) Th. EAM-RSGF [12] 2.92, 5.26, 6.12
Cu(1,1,17) Exp. EELS [3] 2.69, 3.14, 6.72
Cu(1,1,17) Th. EAM-LD [3] 7.46, 7.92
Ni(977) Exp. HAS [4] 3.55, 3.60
Ni(977) Th. EAM-RSGF [13] 3.3, 3.9, 4.9, 9.1
Pt(775) Exp. EELS [1] 6.15

the other two atoms contribute more to the lower frequency modes than the atoms in the bulk.
As noted in previous publications [12, 55], the LDOS of the (211) and the (511) surfaces are
similar to each other and different from those of the (331). These similarities and differences
are related to trends in the multilayer relaxation patterns on these surfaces, as discussed above.
Furthermore the plots in figure 13 suggest complexity in the way the different surface localities
differ from those of the atoms in the bulk. We also find that the LDOS of the BNN atoms
(in the layer adjacent to the corner atoms) show an enhancement in the high frequency region
over bulk values [55]. This enhancement at the high frequency end is very prominent in
the LDOS of the surface atoms on Cu(532) which has a regular array of kinks [56], as seen
in figure 14.

The effect of the novelties in the vibrational dynamics is reflected in the calculated local
vibrational free energy illustrated in figure 15 for the top layers of (511), (211) and (331). Atoms
in all three surface chains (SC, TC, CC) are distinguished from the rest for (511) and (211).
However for (331), layer 3 which corresponds to CC atoms on the terrace shows characteristics



S3220 T S Rahman et al

0.4

0.8

Bulk
ST
TC
CC

(a) Cu(511)

0.4

0.8

Bulk
SC
TC
CC

(b) Cu(211)

0 2 4 6 8 10

ν (THz)

0.0

0.4

0.8

V
L

D
O

S 
(a

rb
. u

ni
ts

)

Bulk
ST
TC
CC

(c) Cu(331)

Figure 13. Projected vibrational densities of states of the step (SC), terrace (TC) and corner (CC)
atoms on (a) Cu(511), (b) Cu(211) and (c) Cu(311) compared to that of a bulk atom.

more similar to those of a bulk atom than those of a surface atom. This interesting behaviour
can again be traced to the effective coordination number. As we know from table 2, the
coordination number for a CC atom of (511) and (211) is 10, while that of a (331) surface
is 11, close to the value 12 for a bulk atom. During relaxation [12], while the CC atom of
(211) and (511) moves upward, away from the bulk, that of (331) moves toward the rest of
the bulk, increasing its effective coordination number. Note that the difference in coordination
between the terrace atoms on (511) and (211) (8 and 9, respectively) is also displayed in the
local free energies in figure 15. The terrace atoms on (511) have contributions closer to those
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of their step atoms, while on (211) they are closer to those of the corner atoms. In a recent
publication [55], we have discussed in detail the effects of varying coordinations and complex
relaxation patterns on the vibrational thermodynamic properties of the vicinal surfaces. We
summarize the essential points here.

For convenience, we focus the discussion on the local quantities calculated at 300 K.
Interestingly, the contributions of the step atoms (SC) are about the same on all three vicinal
surfaces. On the Cu surfaces it is almost 41 meV/atom while on the Ag surfaces it is about
68 meV/atom. Although the percentage enhancement over the bulk value is significantly larger
on Cu surfaces than on the Ag ones, in each case it is in excess of about 19 meV/atom over
that in the bulk. Turning to the contributions of the TC atoms, we find a good correspondence
with their respective coordinations. On (511) on which their coordination is 8, they contribute
about 17 meV/atom more than the bulk atoms, similar to the value for the atoms on (100)
surface with the same coordination. On (211) and (331), their contribution over the bulk is
about 13–11 meV/atom, resembling that of the surface atoms on (111), which also have a
coordination of 9. The largest difference in contribution for the atoms on the three types of
vicinal surface comes from the corner atoms which on (331) contribute only 2–3 meV/atom
more than the atoms in the bulk, while on (511) and (211) surfaces the corresponding amount
is 9 meV/atom. This is again understandable from previous arguments based on atomic
coordination. The atoms in the other layers in the tables have similar contributions to the
bulk and small variations can again be linked to their relaxation and non-bulk-like contribution
to the vibrational DOS. The above findings regarding the differential, local vibrational free
energy contribution of atoms in undercoordinated sites show that the vibrational free energy
does not scale with the coordination number in a simple manner, although its dependence
on the coordination is remarkable. This is not surprising, as the coordination number is not
the only factor controlling the characteristics. Relaxations of the individual atoms and their
bond lengths with the surrounding atoms are also expected to play a role in defining local
characteristics of a surface. Unlike those in flat surfaces, the atoms forming the terraces of
vicinal surfaces experience a distinctive atomic environment because of the lack of symmetry
along the direction perpendicular to the step edge, in the terrace plane, in addition to the
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direction normal to it. This in turn leads to complex relaxation patterns and bond lengths for
the surface atoms as shown in previous studies [12, 19], resulting in distinctive characteristics
of the local regions on the surface.

Using the local contributions to the vibrational entropy we can calculate the surface and
step excess free energies, following the procedure discussed earlier; we find the calculated
surface excess vibrational free energies for Cu and Ag vicinals at 0, 100 and 300 K to be quite
small. The calculation of the excess step free energies, however, shows a remarkable effect of
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Figure 16. The dependence of the excess step free energy (vibrational part) on the surface geometry.

the vibrational component. The temperature variation of the step vibrational free energy for
the three surface geometries is plotted in figure 16. It is remarkable that the excess vibrational
contribution is almost non-existent for both Ag(511) and Cu(511). From 0 to 300 K it shows
a variation of only 1 meV/atom. On the other hand, the contribution is remarkable for both
Ag(211) and Cu(211) and constitutes about 10% of the total free energy [57] in the case of Cu.
For Ag(211) it changes from −1.16 meV/atom at 0 K to −7.72 meV/atom at 300 K, while
for Cu(211) it is −2.04 meV/atom at 0 K and −9.21 meV/atom at 300 K. The case of the
(331) surfaces lies in between the other two geometries. For Ag(331) it decreases from 0 at
0 K to −2.93 meV/atom at 300 K and for Cu(331) it varies from −0.8 meV/atom at 0 K to
−5.2 meV/atom at 300 K. Since the step free energy is relevant to the roughening temperature
of a surface, we expect vibrational contributions to play an important role particularly for
Cu(211) and Ag(211).

5. Summary

We have presented here a summary of the results of calculations of multilayer relaxations,
selected dynamical properties and vibrational contributions to thermodynamic properties of a
set of vicinal surfaces of several transition metals. Calculations were performed using either
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ab initio electronic structure calculations or many body interaction potentials. Comparisons
of results were made with available experimental data. The main conclusion to be drawn is
that of the important role of the local coordination in determining the structural, dynamical
and ultimately thermodynamical properties of these surface nanostructures. Of the large list of
vicinals of varying surface geometry, terrace width, step face orientation and elemental metal
studied here, the striking feature in the multilayer relaxation is the large outward relaxation of
the corner atom (actually, the least undercoordinated atom) coupled with the inward relaxation
of its neighbouring surface atom. While the inward relaxation of the step atom has been known
of for a while, that of the ‘corner’ atom and its neighbour has been uncovered only recently.
At least for Cu, Pd, Al and selected vicinals of Ni, Ag and Pt, the trends in the calculated
multilayer relaxations point to this enhanced local effect at the step and near the corner site,
in accordance with principles of charge smoothing. The reduced coordinations of the surface
atoms lead to electronic densities of states which are narrow and shifted towards the Fermi
level. Furthermore changes in the bond lengths of the surface atoms from their neighbours are
reflected in corresponding softening and stiffening of force constants with respect to those in
the bulk. As a result localized modes appear on stepped surfaces whose existence has been
verified experimentally. Moreover projected vibrational densities of states of surface atoms
show enhancements of modes at the low frequency end, as well as near (and sometimes above)
the top of the bulk modes. The vibrational entropies of these surfaces are thereby impacted
on by their local geometry and coordination. The local contributions scale with coordination
in a complex manner. While the surface free energies of a set of vicinals of Ag and Cu show
very little sensitivity to the vibrational contribution, the excess step free energy could have a
vibrational contribution of about 25%.

In considerations of growth and surface stability, vibrational contributions cannot be
ignored. Needless to say, surface relaxations are an inherent component of the novel features
of vicinal surfaces and should not be ignored in any serious examination of these surfaces. Last
but not least, the modifications in the structural, dynamical and subsequently thermodynamical
properties introduced by the presence of steps on surfaces are local in nature, thereby allowing
an extension of the knowledge gained from systematic studies of stepped surfaces to more
complex environments such as those on nanocrystals.
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